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METHOD OF DETERMINING THE PHASE VARIABLES OF THE SOLID 

PHASE IN DISPERSE FLOWS 

N. N. Prokhorenko and S. A. Tikhomirov UDC 536.248:66.095.5 

A method was developed for contactless measurement of the kinematic characteristics 
of the solid phase in disperse flows. The proposed method was substantiated empir- 
ically and the error was determined. 

Although knowledge of the coordinates and velocity fields of both phases in multiphase 
systems fully determines the intensity of the target processes in heat and mass transfer, 
until now they have been little studied due to the lack of experimental methods of investi- 
gating them. 

This article attempts to develop a method of determining the empirical probability dens- 
ity function for the coordinates and absolute velocity of a test particle in a disperse 
flow -- in particular, in apparatuses with a monodisperse fluidized bed. To do this, we need 
an empirical method of determining the phase variables of the test particle. 

The familiar method in [I, 2] for measuring the coordinates of an isotope-labeled par- 
ticle has several advantages over other methods [3, 4]: i) it allows for continuous record- 
ing of the position of the particle in the fluidized bed; 2) it permits measurements to be 
made at any point in the apparatus; 3) the transducers are located outside the apparatus and 
do not d~sturb the natural character of flow of the phases; 4) a test particle labeled with 
the Co 6~ isotope is representative in the sense that, for practical purposes, it is thesame in 
size and weight as the other particles in the monodisperse bed. 

However, the method does have several shortcomings, making it impossible to evaluate 
the particle concentration field in the phase space~ instability of the electronic equip- 
ment, since the signal is analyzed in analog form; oscillograms based on calibration curves 
are analyzed manually; it is necessary to differentiate the experimentally obtained coordin- 
ates in order to obtain estimates of the absolute velocity of the tagged particle [5]. 
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In the method we propose for determining the phase coordinates of a test particle tagged 
with Co 6~ an attempt was made to eliminate these problems while retaining the main advant- 
ages of the method in [I, 2]. We propose to measure not the current in the anode load on the 
transducer but instead the number of pulses of a certain amplitude from the recording scintil- 
lation block over a period of time At. We then relate this number to the position and veloc- 
ity of the particle tagged with Co 6~ This relation should be in a form that will make it 
possible to calculate the phase variables on a computer during the experiment. 

Physical-Mathematical Foundations of the Measurement Method. Let a particle of granular 
material tagged with a Co 6~ isotope of activity Jo be fixed a distance Irl in front of an 
NaI(TI) crystal. The random number of current pulses M measured during the time t has the 
mathematical expectation 

< M > : •176 exp(-- ~]r!) (!) 
16 r.r 

If the particle were not stationary, i.e. r = r(t), it is not hard to show that 

d(M>dt -- •176 {1--t r.rr.r (2+girl)}. (2) 

To find the coordinate r(t) by means of (2) in the absence of information on r(t), we will 
examine the conditions under which we can ignore the second term in the brackets. 

According to test data [i, 2], the velocity of particles in a fluidized bed is on the 
order of 10 -I m/see, while 10 -2 m < Irl < 10 -I m for laboratory apparatuses. It follows 
from this that the second term in the brackets will be small compared to i if t = i0 -= - 
10 -3 sec. Henceforth, we everywhere adopted a time interval At = 5"10 -3 see. Then we use 
Eq. (2) to obtain a formula for Irl: 

• exp (--~ [r]) (3) 
<M>~ 

16 r.r 
This relation can be simplified by keeping in mind that ~ ~ I0~ Irl = i0 -~ - i0-: m. Ex- 
panding exp(-~]r]) intoa seriesand ignoringthe terms beginning with (~Irl) 3, we obtain the 
theoretical formula 

lr~l = - - ~  § F ~ l +  4Ai  , Ai = 16M~ ~2 
2 A~ ~Jod2At 2 ' 

Ir,I 2 = (a~) - -  x) 2 § (a~) - -  y)~ § ( a ~ ) -  zp.  ( 4 )  

(i) a(i) .(i) Here, the vector ai(ax , y ' ~z ) determines the location of the optical center of the 
i-th transducer-crystal NaI(TI) in the stationary coordinate system. Since r has three com- 
ponents, then i ~3. 

Having measured the number of current pulses M i in the three transducers, we use Eq. 
(4) to find x, y, and z. We emphasize that Eq. (4) contains the random number Mi, not its 
mathematical expectation <Mi>. 

We use Eq. (2) to determine the absolute velocity of the particle ~ = ~(~, #, ~), but 
we take the time t of measurement of the number of current pulses to be larger than in the 
case of the coordinate determination. 

We integrate Eq. (2) from 0 to t; we apply the first law of the mean to the integral 
containing ~(t). Then (in the stationary coordinate system) 

t t 
r(~) S (~[r] if- 2)]r] ~exp (-- ~]rl) rtdt = -- S exp (--]r] 2~)[r[) dt -[- 

o o 

16(M> 
• d~ 

where E belongs to the interval (0, t). 

If we take t = nat in (5), we obtain the following algorithm to determine ~. We use 
(4) to find the coordinates x, y, z for each n successive intervals At of seconds, compare 
the integral sums in accordance with (5), and for i~3 obtain i linear nonhomogeneous equa- 
tions relative to estimates of the velocity components i, #, ~. We find the absolute veloc- 
ity from three of them. This algorithm clearly illustrates that the more accurate the esti- 
mate of the coordinates, the more accurate the estimate of the velocity components. 
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Fig. i. Dependence of the number of current pulses in a photocell 
amplifier on the distance Ir[ (m), At = 5"10 -3 sec; Io = i mCi; 
d = 0.15 m; i) theoretical curve from Eq. (3); 2) empirical curve. 

Fig. 2. Calibration relation <M> (Irl): At = 5"10 -3 sec; Io = 
I mCi; d = 0.15 m; a) estimate of the standard deviation; points 
denote test results, solid line denotes approximation of the rela- 
tion <M> ([rl). 

Conditions of Existence, Uniqueness; Error of the Proposed Method 

Analysis of nonlinear system (4), connecting Iril (i ~3) with the three coordinates x, 
y, z, shows that the condition of the existence and uniqueness of the solution, i.e. of all 
three values x, y, z, is that the tagged particle should not be located in a plane contain- 
ing the optical centers of the three chosen crystals NaI(TI). Let us examine the error of 
the estimate of the coordinates x, y, z. It naturally depends on the error of the determina- 
tion of Iril (see (4)), while the latter depends on the error of the measurement of M and its 
closeness to <Mi>. In fact, theoretical formulas (4) contain not the mathematical expecta- 
tion of the number of current pulses <Mi> in the i-th transducer, but instead the random 
value Mi, measured over the time At = 0.005 see. 

We will express the increment of I ril in (3) through an increment -- the pulsation of the 
measured quantity AMi: 

'Ar~]= ( •176 ) -~ ]rdsexp(plr~[) 2+~]r~ ,  

where l il = IMi- <Mi>l; lAri[ = Iri true -ril" The deviation of the random value M i 
from its mean with a probability close to 1 is equal to I AMiI~3~ (/~i) since M i is a 

Poisson process. 

We will insert this expression into the previous expression with allowance for ~ ~ i0 ~ 
Iril ~ Iri true I ~10-t m. Then 

.IAr~ I = 6 Ir~i 2 (6) 

V'z--Jod%t 

It follows from this that among all of the transducers we need to select that closest to the 
tagged particle. 

Let us examine the effect of the error of calculation of IAril on the error of Ax, Ay, 
Az. From system (4) we have 

(a3 ~ - -  x) A x + (a~) - -  V) Ay + ( a ~ ) -  z) A2 --- Iril-lard, (7)  

i=] ,  k, l; ], k, l : l ,  2, 3 . . . .  
Analysis of system (7) with allowance for (6) shows that when the condition of existence 

and uniqueness of system (4) is satisfied, the error of the coordinate determinations is not 
strongly dependent on the distances between the transducers and the tagged particle. The 
magnitude of the error is 

6 , Ar(Ax, Ay, Az). (8)  JArl =-"~ 
l/• 

We will examine the error of the measurement of the absolute velocity of the tagged 
particle. Analysis of system (5) shows that the magnitude of the error of IA~I is not sig- 
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nificantly affected by the determinant of the matrix of the coefficients with the velocity 
components in the left side of Eq. (5). The greater the absolute value of this determinant, 
the less the effect of the error of the coordinates of the tagged particle. From this we 
obtain a method of selecting the optimum trio of transducers out of the total number of 
transducers. Our experimental unit contained six transducers, and we obtained 20 different 
third-order determinants. It was necessary to select the ones with the highest modulus in 
order to find the trio of transducers which would provide the maximum accuracy in determin- 
ing the absolute velocity. 

The following is necessary to reduce the error of the method used here to determine the 
coordinates and velocity of the tagged particle in a disperse flow: i) increase the activ- 
ity Jo of the isotope in the tagged particle; 2) increase the time of measurement At of the 
coordinate; 3) increase the dimension d of the scintillation crystal; 4) perform the meas- 
urements in small apparatuses and locate the NaI(TI) crystal as close as possible to the 
wall of the apparatus; 5) from the total number of recording transducers for each coordinate 

measurement choose the three transducers which ensure the minimum distances to the tagged 
particle; 6) from the total number of transducers for each velocity measurement choose the 
three transducers which ensure the maximum modulus of the determinant of system (5). 

These requirements, incorporated into an algorithm, can be satisfied even by using a 
type 15 VSM-5M minicomputer with an external store. 

Numerical Experiment. Before developing an experimental unit, we developed an algorithm 
and a program for a numerical experiment for a BESM-4M computer. The essence of the experi- 
ment was as follows. We simulated the movement of a tagged particle over a known trajectory 
r(t) and ~(t) and generated a Poisson sequence of random numbers with the required mathemati- 
cal expectation (3). We chose the intensity Jo = 1 mCi to be as high as possible considering 
health regulations. The size of the crystal in the "Limon" scintillation block d = 0.15 m, 
At = 5'10 -3 sec. The trajectory was in the form of an ellipse with semiaxes D/4 and D = 
0.25 m. 

The numerical experiment made it possible to significantly improve the accuracy of the 
method of coordinate and velocity determination if the condition of existence of the solution 
of system (4) was abandoned (see above); conversely, the closer the tagged particle to the 
plane of the trio of optical centers of the transducers, the less Iril (see (6)) and the more 
accurate the estimate of r i. The readings from the trio of transducers are used to calcu- 
late only two coordinates, while the third is calculated on the basis of the readings of a 
transducer not included in the preceding trio but located nearest to the tagged particle. 

T~e absolute error of the coordinate evaluation with such a method of calculation 
proved to be equal to about 10 -3 m, while the absolute error of particle velocity components 
was about 10 -2 m/sec when the latter were calculated over the time t = 20At = 0.i sec. 

Experimental Verification of the Physical Foundations of the Method 

First we checked the theoretical relation (i) and refined the efficiency coefficient of 
the crystals. The tagged particle was located on the axis of the scintillator at different 
distances and over At = 5"10 -3 sec we recorded the number of current pulses in a photocell 
amplifier. 

It follows from Fig. 1 that there is a certain value of Irl equal to 0.i m such that 
there is a sharp reduction in <M> at distances less than Irl; also, the experimental rela- 
tion <M> at Irl > 0.I m differs from the theoretical relation in the character of the change 
in the function. 

Analysis of this result shows that the decisive effect on the change in the operation 
of the transducers at [r I 40.1 m is exerted by the fact that the NaI(TI) scintillator has a 
fluorescent life of about 10-s-10 -j sec. When there is a large flow of y-quanta, the light 
flashes occur simultaneously, in packets. Thus, it is impossible to compare the number of 
light pulses and the number of y-quanta. This conclusion was confirmed visually by means of 
an oscillograph. It was found that at Irl 90.17 m the current pulses do not unite into a 
single packet, although the method described above for measuring phase variables requires 
minimum distances between the crystals and the tagged particle. 

However, this is not the only correction to the theoretical premises underlying the 
method. It turns out that the coefficient • in (i) depends in a complicated manner on the 
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radiant energy, density, and mean atomic number of the scintillator, the geometry of the 
radiation, the completeness of transmission of light photons to the photocathode of the 
photocell amplifier, the sensitivity of the discriminator in the electronic circuit, the 
paths of the y-quanta in the crystal, the intensity of the Compton scattering, and, thus, 
objects located around the unit and the voltage supplied to the photomultipliers. 

Some of these effects can be accounted for by the relation [6] 

( • JodZ'~ I J~ exp (-- ~t ]rl) • (Irj) exp 
< M ) - -  161rl z 161ri  z 

But in such a form the function • remains unknown. We thus decided to empirically ob- 
tain the relation <M> (Irl), approximate it within the limits of the experimental error, and 
subsequently use it to find the coordinates of the tagged particle. With a fixed value of 
Irl, over the time At = 5'10 -~ sec we made i000 measurements of the random number of current 
pulses M, calculated the mathematical expectation and the dispersion and constructed a histo- 
gram. The latter turned out to be close to a Gaussian curve. The calibration curve was ob- 
tained in an apparatus with a fluidized bed of alumosilicate catalyst at a gas velocity near 
to and greater than the critical value. It follows from Fig. 2 that, with a probability of 
0.67, the greatest absolute error in the determination of the distance from the tagged 
particle to the NaI(TI) crystal within the volume of the apparatus is -+I0 -~ m. Thus, this 
value also establishes the accuracy of the approximation of the relation, which can be used 
in the algorithm of the program for calculating r(x, y, z) and evaluating the particle con- 
centration field in the volume of the apparatus. 

NOTATION 

r(t), r(t), vector of the coordinate and velocity of the tagged particle; Jo, isotope 
activity; At, measurement time; <M>, mathematical expectation of the recorded number of y- 
quanta; d, • diameter and efficiency of the NaI(TI) scintillation crystal; ~, coefficient 
of linear absorption of the medium; ai, vector determining the location of the scintillator; 
T, fluorescent life of the scintillation crystal. 

i. 

o 

3. 

4. 

1 

6. 
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